If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2+5k-24=0
a = 4; b = 5; c = -24;
Δ = b2-4ac
Δ = 52-4·4·(-24)
Δ = 409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{409}}{2*4}=\frac{-5-\sqrt{409}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{409}}{2*4}=\frac{-5+\sqrt{409}}{8} $
| 4=1-2k+5 | | 14=2(w-8)+6w | | X2+12x=7x+1 | | (2y-1)=(y+2) | | 7p-3=3p+7 | | (9+2i)(3-5i)-(9+i)(3-5i)=15+9i | | 2x+3/3=3x-8/8 | | 5=-2+a | | 4(.x+5)=56 | | -12x-14=22 | | 4.x+5=56 | | 7x-5-x=23 | | 7v+16=9(v+4) | | 6n2+48n+96=0 | | -2=3/5r-5 | | x+5*2-6/2=8 | | x^2-x+.26=0 | | 17.94=3.9(g-15.5)+8.97 | | -9y=-10y+20 | | -19-11q=-13q+13 | | 15(x)=3 | | -12(x-9)=-6(8-3x | | 15(x)=2 | | 164=4+8(-3p-1) | | 19v-16v=+3=15 | | 15x2(x)=3 | | 5x+5=-10-9x | | -4+2v=4 | | -11-10p=19-12p | | -42v=4 | | 3=-3+y/3 | | 13v-4=14v |